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Abstrucr-While early protocol design  efforts had to rely  largely on As they develop, Protocob  must be described for  many 
seat-of-the-pants  methods,  a variety ofmore rigorous techniques have  been purposes. Early descriptions provide a  reference for  coopera- 
developed  recently.  This PapersurveYstheformalmethodsbeingaPPliedto tion  among designers of  different parts of a protocol  system. 
the  problems  of protocol specification, verification, and  implementation. The design must be checked  for logical correctness. Then  the 
its  users  and  the internal operations  of the entities that compose the layer protocol must be imp1emented, and if the protocol is in wide 
must  bedefined. Verification thenconsistsofademonstration that  the layer use, many  different  implementations may have to be checked 
will meet its service specification and that each  of the components is for ComDliance with a standard. Although  narrative  &scrip- 

In  the  specification  area,  both  the service that a protocol layer provides  to 

- 
correctly  implemented.  Formal  methods  for  accomplishing  these tasks are tions and informal walk-throu&s are invaluable elements of 
discussed, including state transition models, program verification, 
symbolic  execution,  and  design  rules. this process, painful  experience has shown that by them- 

selves they are inadequate. 

A 
I. INTRODUCTION 

S evidenced  by the earlier  papers of this  issue, increasingly 
numerous  and  complex  communication  protocols are 

being employed in distributed systems and  computer  networks 
of various types.  The  informal  techniques used to  design these 
protocols have been largely successful, but have also yielded 
a disturbing  number  of  errors or unexpected  and undesirable 
behavior  in most  protocols. This  paper  describes  some of  the 
more  formal  techniques which  are  being  developed to facilitate 
design of correct  protocols. 

Manuscript  received  August 8, 1979;  revised January 8, 1980.  This 
work was supported  in  part  by  the  National  Sciences  and  Engineering 
Council  of  Canada  and  the  United  States  Advanced  Research  Projects 
Aeencv. 

In the~following  sections, we shall discuss the use of  formal 
techniques in each of the major design steps of specification, 
verification, and  implementation.  Section I1 clarifies the 
meaning of specification  in the  context of a layered  protocol 
architecture, identifies  what  a protocol specification should 
include,  and describes the major approaches  to  protocol 
specification. Section 111 defines the meaning of verification, 
discusses what can be verified, and describes the main verifi- 
cation  methods.  Section IV provides pointers to some impor- 
tant case histories of  the use of these techniques.  For detailed 
examples, we refer to  the  subsequent papers of this issue 
which generally provide additional  support  for  the  points 
which we have had  to  treat briefly in this survey. A complete 
bibliography may be found in [ 181 , and  complementary 
surveys  in [44], [8], [33],  [43]. 

11. PROTOCOL  SPECIFICATION 
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identifies the major  elements that comprise  a  specification, 
and presents the major methods  for  protocol specification. 

A. The Meaning of  Specification 

We assume that  the  communication  architecture of a 
distributed system is structured as a hierarchy  of  different 
protocol layers, as described in earlier papers of  this issue. 
Each layer provides a  particular  set of Services to  its users 
above.  From  their  viewpoint, the layer  may be seen as a 
“black box” or machine  which allows a certain  set of inter- 
actions  with  other users (see Fig. 1). A user is concerned  with 
the  nature of the service provided, but  not  with  how  the 
protocol manages to  provide it. 

This description  of the  input/output behavior of the 
protocol layer constitutes a Service Specification of the 
protocol.  It should be “abstract” in the sense that  it describes 
the  types  of  commands  and their effects,  but leaves open  the 
exact  format  and mechanisms  for  conveying them (e.g., 
procedure calls, system calls, interrupts, etc.). These formats 
and mechanisms  may be different  for users in different  parts 
of the  system,  and are defined by an Interface Specification. 

Service Specifications 

Specifying the service to  be provided  by  a  layer of a dis- 
tributed  communication system presents  problems similar to 
specifying any software  module  of  a  complex computer 
system.  Therefore  methods developed for  software engineering 
[36],  [31] are useful for the  definition  of  communication 
services. Usually,  a service specification is based on a set of 
Sewice Primitives which, in an  abstract  manner, describe the 
operations  at  the  interface  through which the service is pro- 
vided. In the case of  a transport service, for  example, some 
basic service primitives are Connect,  Disconnect,  Send, and 
Receive. The  execution of  a service primitive is associated 
with the exchange  of  parameter values between  the  entities 
involved, i.e., the service providing and using entities  of  two 
adjacent layers. The possible parameter values and  the direc- 
tion  of  transfer  must be defined  for  each parameter. 

Clearly, the service primitives should  not be executed in an 
arbitrary  order  and with arbitrary  parameter values (within 
the range of possible values). At any given moment,  the 
allowed primitives and  parameter values depend on the pre- 
ceding history  of  operations.  The service specification  must 
reflect  these constraints by  defining the allowed  sequences 
of  operations  directly, or by  making use of  a “state”  of  the 
service which may be changed as a  result  of some  operations. 

In general, the  constraints  depend  on previous operations 
by  the same user (“local” constraints),  and by other users 
(“global”  constraints).  Considering again the example  of  a 
transport service, a  local constraint is the  fact  that Send and 

Receive may only be executed  after a successful Connect. 
An example of a global constraint is the  fact  that  the “mes- 
sage” parameter value of the first Receive on one side is 
equal to  the message parameter value of the first Send on the 
other side. 

Protocol Specifications 
Although irrelevant.  to  the user, the  protocol designer 

must be concerned  with  the  internal  structure of  a protocol 
layer. In a network  environment with physically separated 
users, a protocol layer must  be  implemented in a distributed 
fa.ihion,  with Entities (processes or modules) local to each 
user communicating  among  one  another via the services of the 
lower  layer (see Fig. 2). The interaction  among  entities in 
providing the layer’s service constitutes  the  actual Protocol. 
Hence a protocol specification  must describe the  operation of 
each entity  within a  layer  in  response to  commands from its 
users, messages from  the  other  entities (via the lower  layer 
service), and  internally  initiated  actions (e.g., timeouts). 

Abstraction and Stepwise  Refinement 

The specifications  described above must embody  the key 
concept of Abstraction if they are to be successful. To  be 
abstract, a  specification  must  include the essential  require- 
ments  that an object must  satisfy and  omit  the unessential. 
A service specification is abstract primarily  in the sense that  it 
does not describe how  the service is achieved (i.e., the  inter- 
actions  among  its  constituent entities), and secondarily in  the 
sense that  it defines only  the general form of the  interaction 
with  its users (not  the specific  interface). 

A protocol specification is a  refinement or distributed 
“implementation”  of  its service specification in  the sense that 
it partly  defines how  the service is provided (i.e., by a set  of 
cooperating entities).  This “implementation” of the service 
is what is usually meant  by  the design of a protocol layer. 
The  protocol specification  should  define each  entity  to  the 
degree necessary to ensure compatability with the  other 
entities  of  the  layer,  but  no  further. Each entity remains to  
be  implemented in the  more conventional sense of that  term, 
typically  by  coding in a  particular  programming language. 
There may be several steps in this process until  the lowest 
level implementation of  a given protocol layer is achieved 
[201,  [111. 

B. What a Protocol Definition Should  Include 

A protocol  cannot be defined without describing its  con- 
text. This context is  given by the  architectural layer  of the 
distributed  system in  which the  protocol is used.  A  description 
of  a  layer should include the following items  [28]. 

1) A general description  of the purpose of  the layer and 
the services it provides. 

2) An exact specification of  the service to  be provided  by 
the layer. 

3) An exact specification of  the service provided by  the 
layer below,  and required for  the  correct  and  efficient  opera- 
tion of the  protocol. (This of  course is redundant  with  the 
lower layer’s definition,  but makes the  protocol  definition 
self-contained.) 
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4)  The  internal  structure  of  the layer  in terms  of  entities 

5) A description  of  the protocol(s) used between the 

a) An overall, informal description of the  operation 

b) A protocol specification  which  includes: 

and  their relations. 

entities including: 

of the  entities, 

i) a list of  the’  types  and  formats  of messages ex- 
changed between  the  entities; 

ii)  rules governing the reaction of each entity  to 
user commands, messages from  other  entities,  and  internal 
events. 

c) Any additional details [not  included in point b)] , 
such as considerations  for improving the efficiency, sug- 
gestions for  implementation choices, or a  detailed  description 
which  may come close to an implementation. 

Refe’rence [8] presents an example  of these items  for a 
simple data  transfer  protocol. 

C. Specification Methods 

Descriptions of communication services and  protocols 
must be both easy to  understand  and precise-goals which 
often  conflict.  The use of  natural language gives the illusion 
of being easily understood,  but leads to lengthy  and  informal 
specifications  which often  contain ambiguities and are dif- 
ficult to check  for completeness and correctness. The argu- 
ments  for  the use of formal specification methods in the 
general context of software engineering [36]  apply also in 
our  context. 

Protocol Specifications 

Most of the  work on formal specification of  protocols 
has  focused on  the  protocol itself and  not on the service it 
provides. A  variety of general formalisms such as state dia- 
grams,  Petri nets, grammars, and programming languages 
have been  applied to this  problem and in many cases adapta- 
tions  or  extensions  to  facilitate  protocol modeling have been 
made [14]. These techniques may be classified into  three 
main categories: transition models,  programming languages, 
and  combinations  of  the first two. 

Transition models are motivated by the observation that 
protocols consist largely of relatively simple processing in 
response to numerous “events” such as commands (from the 
user), message arrival (from the lower layer),  and  internal 
timeouts. Hence state machine  models of  one  sort or another 
with  such events forming  their  inputs are  a natural model. 

However, for protocols of any complexity,  the  number  of 
events and states required in a  straightforward transition 
formalism becomes unworkably large. For example, to model 
a protocol using sequence numbers,  there  must be different 
states and events to handle  each possible sequence number 
[37]. Models falling into this  category include  state transi- 
t i m  idagrams [4],  [SO], grammars [25], [47],  Petri  nets 
and  their derivatives [35],  [46], L-systems [19], UCLA 
graphs [37], and  colloquies [30]. 

Programming language models [24],  [41],  [6],  [21]  are 
motivated  by the observation that  protocols are  simply one 
type  of  algorithm,  and  that high-level programming languages 
provide a clear and relatively concise means of describing 
algorithms.  Depending on  how high level and  abstract a 
language is used, this approach  to specification  may  be quite 
near to an  implementation of the  protocol. As noted  above, 
this proximity is a  mixed blessing, since unessential features 
in the program  are often  combined with the essential prop- 
erties of  the algorithm.  A  major  advantage of this approach 
is the ease in han.dlirig variables and parameters  which  may 
take  on a large number of values (e.g., sequence numbers, 
timers), as opposed to pure state machine  models. 

Hybrid  models [45] , [16] , [IO] , [40] , [3]  attempt to 
combine  the advantages of  state .models and programs.  These 
typically employ a small-state model to capture  only  the 
main features  of  the  protocol (e.g., connection establish- 
ment, resets, interrupts). This state model is then  augmented 
with”additional  “context” variables and processing routines 
for  each  state. In such  hybrid models, the  actions to be taken 
are determined  by using parameters from  the  inputs  and values 
of the  context variables according to  the processing routine 
for  each major state. For example,  the sequence number of 
an arriving message may  be compared  with a variable giving 
the  expected  next sequence number to determine  whether to 
accept  the message, what the  next  state  should  be,  and  how  to 
update  the  expected sequence number. Bochmann and Gecsei 
[ lo ]  have demonstrated  the  potential for  trading  off the 
complexity  of  the  state model with  the  amount  of  context 
information  for a given protocol.  (Other  techniques  for 
managing the  complexity  of  protocols are discussed in  Section 

As noted above, one major goal of protocol specification 
is to provide  a basis for  implementation. Some  specification 
methods facilitate  this goal more  than  others. Programming 
language specifications may be quite close to implementations 
(but  often lack the desired degree of abstraction). Direct 
implementation of transition or hybrid  model specifications 
by  some form  of  interpreter or “compiler” is also relatively 
straightforward [ l l ]  . In many cases, these implementation 
methods have been at least  partially automated  [40],  [47], 

111-C.) 

[221> P I .  
Service Specifications 

It is only  recently that  the need for comprehensive proto- 
col service specifications  has  been realized [3],  [43]. Initial 
efforts  at formal service specifications have been directed 
towards applying general software engineering methodology. 
As noted in Section 11-A, definition  of  the primitive opera- 



I 
BOCHMANN AND  SUNSHINE: COMMUNICATION PROTOCOL DESIGN 627 

tions  supported  by  the  layer (e.g., Send,  Connect) is a, basic 
feature  of  any specification. In abstract machine type specifi- 
cations,  internal  “states”  of  the  layer are  also  defined. These 
states are used in  defining the  effects  of  each  operation$ifd 
may be changed as a  result of  the  operation [38]. 

Other specification methods  that  do  not require  definition 
of explicit states may also be used. I/O history  type  methods 
define the allowed input  and  output sequences of  the layer 
and their  relation to each  other (e.g., that  the sequence  of 
messages delivered is identical to  the sequence  of messages 
sent) [20], [3]. Algebraic specifications [23] provide another 
way of defining the allowed  sequence of  operations. Sunshine 
[42] provides  a  comparison of several of these methods,  but 
work in this area is just beginning. 

111. PROTOCOL VERIFICATION 

In its broadest  interpretation, system  validation  aims to 
assure that a  system satisfies its design specifications and 
(hopefully)  operates to  the satisfaction of  its users. Valida- 
tion activity is important  during all design phases, and may 
include testing  of  the final ‘system  implementation, simula- 
tion  studies, analytical  performance predictions,  and verifica- 
tion. Verification is based on  the system specification,  and 
involves logical reasoning. Therefore it  may  be used during 
the design phase before any system implementation exists, 
in order to avoid possible design errors. While testing  -and 
simulation  only validate the system for  certain  test  situations, 
verification allows, in  principle, the  consideration  of all 
possible situations  the system  may encounter  during  actual 
operation. 

A. The Meaning of Verification 

Verification is essentially  a demonstration  that  an  object 
meets  its specifications. Recalling from  Section I1 that Services 
and Protocol Entities are the  two major classes of objects 
requiring  specification for a protocol  layer, we see there are 
two basic verification  problems that  must  be addressed: 1) 
the protocol’s Design must be verified by  analyzing the pos- 
sible interactions  of  the  entities  of  the  layer,  each  functioning 
according to its (abstract)  protocol specification and  com- 
municating through  the  underlying layer’s service, to’ see 
whether  this  combined  operation satisfies the layer’s service 
specification;  and 2) the Implementation of  each  protocol 
entity must be verified against its  abstract  protocol specifica- 
tion. 

The  somewhat ambiguous  term “protocol verification” 
is usually intended  to mean  this  first design verification 
problem. Because protocols are inherently  systems  of  concur- 
rent  independent  entities  interacting via (possibly unreliable) 
exchange of messages, verification  of protocol designs takes 
on a  characteristic communication  oriented flavor. Imple- 
mentation of each  entity,  on  the  other  hand, is usually done 
by “ordinary” programming techniques,  and hence  represents 
a  more common  (but by no means trivial) program verifica- 
tion problem that  has received less attention  from  protocol 
verifiers. 

The service specification itself cannot be verified,.  but 

rather forms the  standard against which the  protocol is veri- 
fied. However, the service specification can be checked for 
consistency [20]. It  must  also  properly  reflect the users’ 
desires, and provide an adequate basis for  the higher levels 
which use it.  Unfortunately,  techniques to achieve these 
latter goals are still poorly understood. 

It is important  to  note  that  protocol verification  also 
depends on the  properties of the lower-layer protocol. In 
verifying that a protocol  meets  its service specification, it 
will  be necessary to assume the properties  of the lower- 
1ayer:s service. If a protocol fails to  meet  its service specifi- 
cation,  the problem  may  rest either  in  the  protocol  itself,  or 
in  the service provided by  the lower  layer. 

Most of the verification work to  date  has been on design 
rather  than  implementation,  and we shall focus  on design 
verification  in the remainder  of  this section. While a proto- 
col design need  only be verified once, each different imple- 
mentation must be verified against the design. 

B. What Can Be Verified 

The overall verification  problem  may be divided along two 
axes,  each with  two categories. On one axis, we distinguish 
between general and specific  properties. On the  other we 
distinguish  between  partial  correctness and  termination  or 
progress. 

General properties are those properties  common to all 
protocols  that may be considered to  form an  implicit part  of 
all service specifications. Foremost  among these is the absence 
of deadlock  (the arrival in some system state o r  set of states 
from which there is no  exit). Completeness, or  the provision 
for all possible inputs, is another general property. Progress 
or  termination may  also be considered in this category since 
they require  minimal  specification of what constitutes “use- 
ful” activity or the desired  final state. 

Specific properties  of  the  protocol,  on  the  other  hand, 
require  specification  of the particular service to  be provided. 
Examples  include reliable data transfer  in  a transport  protocol, 
copying a file in  a file transfer protocol,  or clearing  a terminal 
display in a  virtual  terminal protocol.  DeFnition of  these 
features  make  up  the  bulk  of service specifications. 

On the  other axis,  partial  correctness  has the usual meaning 
that if the  protocol performs any  action  at all, it will be in 
accord  with  its service specification.  For example, if a  trans- 
port  protocol delivers any messages, they will be to  the  cor- 
rect destination, in the  correct  order,  and  without errors. 
Termination or progress means that  the specified services 
will actually  be  completed in finite time. In  the case of logical 
verification,  which is the subject  of  this report,  it is sufficient 
to ascertain  a finite  time delay. In the case that  the efficiency 
and responsiveness of the  protocol is to  be verified, it is 
clearly necessary to  determine numerically the  expected 
time  delay,  throughput,  etc. 

C. Verification Methods 

Approaches to  protocol verification have followed two 
main paths: reachability  analysis and program proofs. Within 
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the scope of this  paper, we can only outline these two 
approaches. The references  cited  in  Section Iv provide more 
details on particular  techniques. 

Reachability analysis is based on exhaustively  exploring 
all the possible interactions  of two (or more)  entities within 
a  layer. A composite or global state  of  the system is defined 
as a combination  of  the  states  of  the cooperating protocol 
entities  and  the  lower layer connecting  them. From  a given 
initial state, all possible transitions (user commands,  time- 
outs, message arrivals) are generated, leading to a number  of 
new global states. This process is repeated for  each of the 
newly  generated states until no new states are generated 
(some transitions lead back  to already  generated  states).  For 
a given initial state  and  set  of  assumptions  about  the  under- 
lying layer  (the  type  of service it offers),  this type  of analysis 
determines all of  the possible outcomes  that  the  protocol may 
achieve. Reference [SO] provides a clear exposition  of this 
technique. 

Reachability analysis is particularly straightforward  to 
apply to transition  models of protocols which have explicit 
states  and/or  state variables defined.  It is also possible to 
perform  a  reachability analysis on program  models  by 
establishing  a number  of  “break  points”  in  the program that 
effectively define  control  states  [24].  Symbolic  execution 
(see the following)  may also be viewed as a form  of reach- 
ability analysis. 

Reachability  analysis is well suited to checking the general 
correctness properties described above because these prop- 
erties  are a direct  consequence  of  the  structure  of  the reach- 
ability  graph. Global states  with  no  exits are either deadlocks 
or desired termination  states. Similarly, situations where the 
processing for a receivable message is not  defined, or where 
the transmission  medium  capacity is exceeded are easily 
detected.  The  generation of the global state space for transi- 
tion models is easily automated,  and several computer aided 
systems  for this  purpose have been  developed [16],  [SO], 
[37].  The major difficulty of this  technique is “state space 
explosion” because the size of the global state space may 
grow rapidly with  the  number  and  complexity of protocol 
entities involved and  the underlying layer’s services. Tech- 
niques for dealing with  this problem  are discussed below. 

The program proving approach involves the usual formula- 
tion of assertions  which  reflect the desired  correctness prop- 
erties. Ideally, these  would  be  supplied  by the service specifica- 
tion,  but as noted above, services have not been rigorously 
defined  in most  protocol  work, so the verifier must formulate 
appropriate assertions of his own.  The basic task is then to 
show (prove) that  the  protocol programs for  each  entity 
satisfy the high-level assertions  (which usually involve both 
entities).  This often requires formulation of additional as- 
sertions  at  appropriate places in  the programs [41],  [6]. 

A major strength of this approach is its  ability  to deal 
with  the full range of  protocol  properties  to be  verified, 
rather  than  only general properties. Ideally,  any  property  for 
which an appropriate assertion can be formulated can be 
verified, but  formulation  and  proof  often require  a great deal 
of ingenuity. Only modest progress has  been made to  date in 
the  automation of this process. 

As with  specification,  a hybrid  approach promises to 
combine the advantages of both techniques. By using a state 
model for  the major states  of  the  protocol,  the  state space is 
kept small, and  the general properties can be  checked  by an 
automated analysis. Other  properties,  for which  a state model 
would be awkward (e.g., sequenced  delivery),  can  be handled 
by  assertion  proofs on  the variables and procedures  which 
accompany the  state model.  Such combined  techniques are 
described in [ 161 and [ 101 . 

While a large body of work  on general program verifica- 
tion  exists, several characteristics of protocols pose special 
difficulties in  proofs. These include  concurrency  of  multiple 
protocol modules and physical separation of modules so that 
no shared variables may be  used. A further  complication is 
that message exchange between  modules may  be  unreliable 
requiring methods  that can deal with  nondeterminism. A few 
early  applications of general program verification methods  to 
protocols are cited in Section IV. 

A particular form  of proof that  has been  useful for  proto- 
cols with large numbers of interacting  entities (e.g., routing 
protocols) may be called “induction  on  topology”  [33]. 
The desired properties are  first shown to be true  for a  mini- 
mum subset of the  entities,  and  then  an  induction rule is 
proved  showing that if the  properties  hold  for a  system of N 
entities,  they also hold  for N + 1 entities. 

When an  error is found  by some  verification technique,  the 
cause must still be determined. Many transitions or program 
statements may  separate the cause from  the place where the 
error  occurs, as for  example  when  the  acceptance of a dupli- 
cate  packet  at  the receiver is caused by  the  too rapid reuse of a 
sequence number  at  the  sender.  In  some cases the  protocol 
may  be modeled  incorrectly, or the correctness conditions 
may be formulated  incorrectly. In other cases, undesired 
behavior  may be due  to transmission  medium properties 
that were not expected  when  the  protocol was designed 
(e.g., reordering of messages in  transit). Even when  an  auto- 
mated verification  system is available, considerable human 
ingenuity is required to understand  and repair any  errors 
that are  discovered. 

Another  approach  to achieving correct  protocols  that  has 
been proposed recently is based on  constructive design rules 
that  automatically result in correct  protocols. In one case 
[ 5 0 ] ,  design rules are formulated which  guarantee that  the 
specifications obtained  for a  set of interacting  entities will 
be complete. For each  send transition specified  by the de- 
signer, the rules determine  the  corresponding receive transi- 
tion to be added to the  partner  entity. In another case [34],  
the specification of a  second entity is determined by  a design 
rule such  that  it will operate  with a  specified  first entity  to 
provide a given overall service. 

A major difficulty  for  protocol verification  by  any method 
is the  complexity  of  the global system of interacting  protocol 
entities, also termed  “state space  explosion.” The following 
methods  may be used to  keep this complexity within manage- 
able  limits. 

1) Partial Specification and Verification: Depending on  the 
specification method used, only  certain aspects of  the  proto- 
col are  described.  This is often  the case for  transition diagram 
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specifications  which  usually capture  only  the rules concerning 
transitions  between major states, ignoring  details of parameter 
values and  other  state variables. 

2)  Choosing  Large Units of  Actions: State space explosion 
is due to  the interleaving of  the  actions  executed by tl%$dif- 
ferent  entities. For example,  the  preparation  and sending of a 
protocol  data  unit  by an entity may usually be considered an 
indivisible action which  proceeds without  interaction  with 
the  other  entities  of  the system. The  execution of such an 
action may be considered  a single “transition” in the global 
protocol  description. 

A  particular application of this idea is to consider  only 
states where the transmission  medium is empty.  Such an 
“empty medium abstraction”  [4] is justified when the  number 
of messages in transit is small. In this case, previously separate 
sending and receiving or sending and loss transitions of dif- 
ferent  entities can be  combined  into single joint  transitions 
of both  entities. 

3) Decomposition into Sublayers andlor Phases: The 
decomposition  of  the  protocol of  a  layer into several sub- 
layers and/or phases of bperation simplifies the description 
and verification,  because the  protocol of  each  part  may be 
verified separately. An example  of  this idea is the decomposi- 
tion of HDLC into  the sublayers  of bit  stuffing, checksum- 
ming, and  elements  of  procedure,  and  the division of  the  latter 
into several components as described  in [9].  

4) Classifying States by Assertions: Assertions which  are 
predicates on  the set  of all possible system states may be 
formed. Each predicate  defines  a set (or class) of  states which 
consists of  those  states for which the predicate is true. One 
may then consider classes of  states collectively in reachability 
analysis instead  of considering  individual states. By making an 
appropriate choice of predicates (and  therefore  clyses of 
states)  the  number  of cases to be considered  may be reduced 
considerably.  This method is usually applied  for proving 
partial  correctness of protocol specifications given in some 
programming language [41] , [6 ]  , and also in the case of 
symbolic  execution [ 131 . Typically,  the assertions depend  on 
some variables of the  entities  and  the set of messages in 
transit  (through  the layer below). 

To illustrate the possible savings in the  number of cases 
to  be  analyzed, consider the  state of  an entity receiving 
numbered  information frames.  Instead of treating all pos- 
sible values of  a sequence  counter variable explicitly as  dif- 
ferent  states,  it may be possible to  consider only  the  three 
cases where the variable is “less than,” “equal to,” or “greater 
than”  the  number in the  information  frame received. 

5 )  Focusing Search: Instead of generating all possible 
states,  it is possible to  predetermine  potential global states 
with  certain properties (e.g., deadlocks), and  then  check 
whether  they are  actually  reachable [ 161 . 

6)Automation: Some  steps in the analysis process may be 
performed by automated  systems [ 131 , [ 161, [20] , [24] , [50] , 
[37] , [13] . However, the use of these systems is not trivial, 
and  much  work goes into representing the  protocol  and 
service in  a form suitable for analysis. Human  intervention is 
needed in many cases for distinguishing  between useful and 
undesired loops, or for guiding the  proof process. 

IV. USES OF FORMAL  TECHNIQUES 

We give in the following  a  (certainly incomplete) list of 
cases where formal  methods were successfully used for  de- 
signing data  communication  and  computer  network  proto- 
cols. In some cases, the  formal specification was made after  the 
system design was essentially  finished,  and served for an 
additional analysis of correctness  and  efficiency, or as an  im- 
plementation guide. In other cases, the formal  specification 
was>used  as a  reference document during the system design. 

Standards 
i l  

Call establishment in the CCITT X.21 protocol has  been 
modeled with a state  transition-type  model  and analyzed with 
a form of reachability analysis [49].  The analysis checked 
for general correctness properties  of completeness and  dead- 
lock,  and. uncovered  a number of completeness errors (i.e., 
a protocol  module  could receive a message for  which no 
processing was defined). 

Virtual  circuit establishment in the CCITT  X.25 protocol 
has been modeled  with a state  transition model and analyzed 
by a  manual  reachability analysis [ 3 ] ,   [ l ]  , [7].  It was found 
that several cycles with  no useful progress could persist after 
the  protocol  once  entered  certain unsynchronized states. 

A  formal  specification method was used during the design 
of several interface  standards for the  interconnection of 
minicomputers  with  measurement  and  instrumentation  com- 
ponents [26],  [48].  The relatively concise  description of  the 
protocols was used as means for  communication  between  the 
members of the‘standard  committees  and  for  the verification 
of the design. It is also part of the final standard  documents. 

The HDLC link  protocol  has been  specified  with  a regular 
grammar model [25] that  incorporated an  indexing technique 
to  accommodate sequence  numbering.  The same protocol 
has also been  specified with a hybrid  model combining state 
transitions  with  context variables and high-level language 
statements [9]. The  latter specification also heavily employed 
decomposition t o  partition  the  protocol  into seven separate 
components,  and was used in obtaining  an  implementation 
of the HDLC link level procedures of X.25 [ 111. 

Arpanet 
Connection establishment in a transport  protocol (TCP) 

for  the ARPANET  has been partially  modeled with a hybrid 
state  transition  model  and validated with a manual reach- 
ability analysis [45]. An automated reachability analysis 
[24] was also used on a simplified model  and revealed an 
error in sequence number handling,  and incorrect modeling 
of the transmission medium. 

A simplified version of the ARPANET IMP-IMPlink protocol 
has been  analyzed with a transition model augmented with 
time constraints  to  show  that proper data transfer  requires 
certain time constraints to be maintained  between  retrans- 
mission, propagation,  and processing times [35]. 

A  simplified version of the ARPANET communications 
subsystem has been  modeled with a high-level programming 
language, and verified using partially automated program 
proving techniques  [20] , [21] . A software engineering system 
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(called Gypsy) was used which provides a unified language 
for expressing both specifications and programs so that high- 
level specifications  in the design can  be progressively refined 
into detailed  programs. Program modules can be both  compre- 
hensively verified in  advance, or checked against their  specifi- 
cations  at run time  for  the particular inputs which  occur. 

Connection  establishment between  a  requester and a  shared 
server process (the ARPANET  Initial Connection  Protocol) 
has  been  modeled with a state  transition model and analyzed 
by an automated reachability analysis [37]. The analysis 
showed that  one  of a pair of  simultaneous requests for service 
might be rejected.  A revised version of  the  protocol was shown 
to eliminate this error.  The same analysis technique was also 
used to validate a simple data  transfer  protocol. 

Other Examples 

The  end-to-end  transport  protocol  of  the  French  computer 
network Cyclades was first specified  in  a  semiformal manner 
using a high-level programming language. This  specification 
was the basis for  the  different  protocol  implementations in 
different  host  computers. Some of these implementations 
were obtained  through a  description  in  a  macrolanguage, 
derived from  the original protocol specification [Sl  ] . The 
same  specification was also the basis for  simulation  studies 
which  provided valuable results for  the  protocol validation 
and  performance evaluation [29] , [ 171 . A  formalized speci- 
fication of the  protocol  has also been given using a hybrid 
model  with  state machines augmented  by  context  informa- 
tion  and processing routines [ 151 . 

The procedures for  the  internal  operation  of  the Canadian 
public data  network  Datapac were described  by  a  semiformal 
method using state diagrams and a high-level programming 
language for  the specification of  the  communicating  entities 
[32]. This  description was very useful for doing  semiformal 
verifications of the  protocols  during  the design phase, and 
served as a  reference document during the  implementation 
and  testing phases of  the system development. 

IBM’s SNA  has  been  specified with a hybrid  model using 
state machines augmented  by  context  information  and 
processing routines  [40] . Hierarchical decomposition is 
heavily used to  create a large number  of  more manageable 
modules. The model provides a basis for  both  automated 
verification of general properties,  and  for  compilation of 
executable  code. 

The Message Link Protocol  [I21 for  process-to-process 
communication  has been  formally  specified  in  a hybrid model. 
A formal service specification was also given, and  the design 
has  been  partially verified by  a  manual  reachability analysis 
using symbolic  execution  [SI.  The verification  uncovered  a 
synchronization problem that has  been corrected in  a more 
recent version of  the  protocol. 

V. CONCLUSIONS 

The specification of a protocol  layer must  include  defini- 
tions of both  the services to be provided by the  layer,  and 
the  protocol  executed by the  entities within the layer to 
provide  this service. “Design verification” then consists of 
showing that  the  interaction  of  entities is indeed  adequate  to 

provide the specified services, while “implementation verifi- 
cation” consists of showing that  the  implementations  of  the 
entities satisfy the more abstract  protocol specification.  A 
useful subset of design verification may be described  as verifi- 
cation of “general properties”  such as deadlock,  looping,  and 
completeness. These properties may be checked in many 
cases without requiring any particular service specification. 

Although protocol specifications must serve many purposes, 
verification and  implementation are two critical  tasks  which 
require rigorous or formal  specification techniques  in  order 
to be fully successful. Formal protocol specifications  are 
more precise than descriptions  in natural language, and  should 
contain  the necessary details for  obtaining  compatible  proto- 
col implementations  on  different system components.  The 
cases mentioned in Section IV demonstrate  that  formal 
methods  may be used profitably  for  the  specification, verifi- 
cation,  and  implementation of communication  protocols. 
However, a  great deal of  work remains to be done in  improving 
verification techniques  and high-level system implementation 
languages, in  integrating  performance  (efficiency) analysis 
with analysis for logical correctness, and in automating these 
analysis techniques. 

Most published  papers on  protocol verification  present 
some particular  verification technique,  and  demonstrate  this 
technique by discussing its application to a simple protocol 
of more  or less academic nature. This is not surprising, con- 
sidering the  short  history  of this specialized discipline. Some 
a posteriori verifications of  protocol  standards of general 
concern have been  presented pointing  out  certain difficulties 
with  the  adopted procedures [l ] , [7] , [49] . These verifi- 
cation  efforts were based on a state reachability  analysis, 
and in one case [49] an automated system was used. The 
results will influence  the  implementation of these protocols, 
and may have an  impact  on  future revisions of  the  standards. 

We believe that  more  effort should be spent  on  the logical 
verification of  protocols during the design phase. Based on a 
formalized  description method, this effort may  in the  future 
be  simplified  by the use of interactive automated systems for 
protocol verification. The same protocol specification used 
for  the verification  should also serve as an official definition 
of the  protocol,  and could  be transformed, possibly through 
a semiautomated process into a usable protocol  implementa- 
tion  [40],  [22],  [l 11 . It is clear that  such  an  approach would 
increase the reliability of  the  protocols, decrease compatibility 
problems, and lower the cost of  the  protocol  implementations. 
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