
624 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980

serves as Vice-chairman (United States) of IFIP Working Group 6.4 on Local
Computer Networks.

*
Edward A. Taft received the B.A. degree in applied
mathematics from Harvard University, Cambridge.
MA, in 1973.

Since then he has been a member of the Computer
Science Laboratory of the Xerox Palo Alto Research
Center, Palo Alto, CA. working in the areas of
internetwork protocols. distributed systems, and
personal computing.

Robert M. Metcalfe received the S.B. degree in
electrical engineering and the S.B. degree in
management from the Massachusetts Institute of
Technology. Cambridge. in 1969. and the M.S.
degree in applied mathematics and the P11.D. degree
in computer science from Harvard University.
Cambridge. MA, in 1970and 1973, respectively.

His Ph.D. dissertation is titled "Packet Com-
munication." He is presently President of 3Com
Corporation and Consulting Associate Professor of
Electrical Engineering at Stanford University.

Stanford. CA. where he has been lecturing on distributedcomputing since 1975.
He was with Xerox Corporation, Palo Alto, CA. between 1972 and 1979. where
he worked on ARPANET, Ethernet, Fibernet, Pup, and Laurel. In June 1979 he
formed 3Com Corporation to promote, develop, and exploit communication
compatibility among computers in the office and home.

Formal Methods in Communication Protocol Design
GREGOR V. BOCHMANN AND CARL A. SUNSHINE

(Invited Paper).

Abstrucr-While early protocol design efforts had to rely largely on As they develop, Protocob must be described for many
seat-of-the-pants methods, a variety ofmore rigorous techniques have been purposes. Early descriptions provide a reference for coopera-
developed recently. This PapersurveYstheformalmethodsbeingaPPliedto tion among designers of different parts of a protocol system.
the problems of protocol specification, verification, and implementation. The design must be checked for logical correctness. Then the
its users and the internal operations of the entities that compose the layer protocol must be imp1emented, and if the protocol is in wide
must bedefined. Verification thenconsistsofademonstration that the layer use, many different implementations may have to be checked
will meet its service specification and that each of the components is for ComDliance with a standard. Although narrative &scrip-

In the specification area, both the service that a protocol layer provides to

-
correctly implemented. Formal methods for accomplishing these tasks are tions and informal walk-throu&s are invaluable elements of
discussed, including state transition models, program verification,
symbolic execution, and design rules. this process, painful experience has shown that by them-

selves they are inadequate.

A
I. INTRODUCTION

S evidenced by the earlier papers of this issue, increasingly
numerous and complex communication protocols are

being employed in distributed systems and computer networks
of various types. The informal techniques used to design these
protocols have been largely successful, but have also yielded
a disturbing number of errors or unexpected and undesirable
behavior in most protocols. This paper describes some of the
more formal techniques which are being developed to facilitate
design of correct protocols.

Manuscript received August 8, 1979; revised January 8, 1980. This
work was supported in part by the National Sciences and Engineering
Council of Canada and the United States Advanced Research Projects
Aeencv.

In the~following sections, we shall discuss the use of formal
techniques in each of the major design steps of specification,
verification, and implementation. Section I1 clarifies the
meaning of specification in the context of a layered protocol
architecture, identifies what a protocol specification should
include, and describes the major approaches to protocol
specification. Section 111 defines the meaning of verification,
discusses what can be verified, and describes the main verifi-
cation methods. Section IV provides pointers to some impor-
tant case histories of the use of these techniques. For detailed
examples, we refer to the subsequent papers of this issue
which generally provide additional support for the points
which we have had to treat briefly in this survey. A complete
bibliography may be found in [181 , and complementary
surveys in [44], [8], [33], [43].

11. PROTOCOL SPECIFICATION
- G . i. Bochmann is with the University of Montreal, Montreal, P.Q., noted above, protocol descriptions play a key role in

Canada. all stages of protocol design. This section clarifies the meaning
of Southern California, Marina del Rey, CA 90221. of specification in the domain of communication protocols,

C. A. Sunshine is with the Information Sciences Institute, University

0090-6778/80/0400-0624$00.75 0 1980 IEEE

BOCHMANN AND SUNSHINE: COMMUNICATION PROTOCOL DESIGN 625

USER USER

PROTOCOL

LAYER

Fig. 1.

identifies the major elements that comprise a specification,
and presents the major methods for protocol specification.

A. The Meaning of Specification

We assume that the communication architecture of a
distributed system is structured as a hierarchy of different
protocol layers, as described in earlier papers of this issue.
Each layer provides a particular set of Services to its users
above. From their viewpoint, the layer may be seen as a
“black box” or machine which allows a certain set of inter-
actions with other users (see Fig. 1). A user is concerned with
the nature of the service provided, but not with how the
protocol manages to provide it.

This description of the input/output behavior of the
protocol layer constitutes a Service Specification of the
protocol. It should be “abstract” in the sense that it describes
the types of commands and their effects, but leaves open the
exact format and mechanisms for conveying them (e.g.,
procedure calls, system calls, interrupts, etc.). These formats
and mechanisms may be different for users in different parts
of the system, and are defined by an Interface Specification.

Service Specifications

Specifying the service to be provided by a layer of a dis-
tributed communication system presents problems similar to
specifying any software module of a complex computer
system. Therefore methods developed for software engineering
[36], [31] are useful for the definition of communication
services. Usually, a service specification is based on a set of
Sewice Primitives which, in an abstract manner, describe the
operations at the interface through which the service is pro-
vided. In the case of a transport service, for example, some
basic service primitives are Connect, Disconnect, Send, and
Receive. The execution of a service primitive is associated
with the exchange of parameter values between the entities
involved, i.e., the service providing and using entities of two
adjacent layers. The possible parameter values and the direc-
tion of transfer must be defined for each parameter.

Clearly, the service primitives should not be executed in an
arbitrary order and with arbitrary parameter values (within
the range of possible values). At any given moment, the
allowed primitives and parameter values depend on the pre-
ceding history of operations. The service specification must
reflect these constraints by defining the allowed sequences
of operations directly, or by making use of a “state” of the
service which may be changed as a result of some operations.

In general, the constraints depend on previous operations
by the same user (“local” constraints), and by other users
(“global” constraints). Considering again the example of a
transport service, a local constraint is the fact that Send and

Receive may only be executed after a successful Connect.
An example of a global constraint is the fact that the “mes-
sage” parameter value of the first Receive on one side is
equal to the message parameter value of the first Send on the
other side.

Protocol Specifications
Although irrelevant. to the user, the protocol designer

must be concerned with the internal structure of a protocol
layer. In a network environment with physically separated
users, a protocol layer must be implemented in a distributed
fa.ihion, with Entities (processes or modules) local to each
user communicating among one another via the services of the
lower layer (see Fig. 2). The interaction among entities in
providing the layer’s service constitutes the actual Protocol.
Hence a protocol specification must describe the operation of
each entity within a layer in response to commands from its
users, messages from the other entities (via the lower layer
service), and internally initiated actions (e.g., timeouts).

Abstraction and Stepwise Refinement

The specifications described above must embody the key
concept of Abstraction if they are to be successful. To be
abstract, a specification must include the essential require-
ments that an object must satisfy and omit the unessential.
A service specification is abstract primarily in the sense that it
does not describe how the service is achieved (i.e., the inter-
actions among its constituent entities), and secondarily in the
sense that it defines only the general form of the interaction
with its users (not the specific interface).

A protocol specification is a refinement or distributed
“implementation” of its service specification in the sense that
it partly defines how the service is provided (i.e., by a set of
cooperating entities). This “implementation” of the service
is what is usually meant by the design of a protocol layer.
The protocol specification should define each entity to the
degree necessary to ensure compatability with the other
entities of the layer, but no further. Each entity remains to
be implemented in the more conventional sense of that term,
typically by coding in a particular programming language.
There may be several steps in this process until the lowest
level implementation of a given protocol layer is achieved
[201, [111.

B. What a Protocol Definition Should Include

A protocol cannot be defined without describing its con-
text. This context is given by the architectural layer of the
distributed system in which the protocol is used. A description
of a layer should include the following items [28].

1) A general description of the purpose of the layer and
the services it provides.

2) An exact specification of the service to be provided by
the layer.

3) An exact specification of the service provided by the
layer below, and required for the correct and efficient opera-
tion of the protocol. (This of course is redundant with the
lower layer’s definition, but makes the protocol definition
self-contained.)

626 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980

USER USER

-
ENTITY 1 ENTITY 2

LOWER LAYER

Fig. 2.

4) The internal structure of the layer in terms of entities

5) A description of the protocol(s) used between the

a) An overall, informal description of the operation

b) A protocol specification which includes:

and their relations.

entities including:

of the entities,

i) a list of the’ types and formats of messages ex-
changed between the entities;

ii) rules governing the reaction of each entity to
user commands, messages from other entities, and internal
events.

c) Any additional details [not included in point b)] ,
such as considerations for improving the efficiency, sug-
gestions for implementation choices, or a detailed description
which may come close to an implementation.

Refe’rence [8] presents an example of these items for a
simple data transfer protocol.

C. Specification Methods

Descriptions of communication services and protocols
must be both easy to understand and precise-goals which
often conflict. The use of natural language gives the illusion
of being easily understood, but leads to lengthy and informal
specifications which often contain ambiguities and are dif-
ficult to check for completeness and correctness. The argu-
ments for the use of formal specification methods in the
general context of software engineering [36] apply also in
our context.

Protocol Specifications

Most of the work on formal specification of protocols
has focused on the protocol itself and not on the service it
provides. A variety of general formalisms such as state dia-
grams, Petri nets, grammars, and programming languages
have been applied to this problem and in many cases adapta-
tions or extensions to facilitate protocol modeling have been
made [14]. These techniques may be classified into three
main categories: transition models, programming languages,
and combinations of the first two.

Transition models are motivated by the observation that
protocols consist largely of relatively simple processing in
response to numerous “events” such as commands (from the
user), message arrival (from the lower layer), and internal
timeouts. Hence state machine models of one sort or another
with such events forming their inputs are a natural model.

However, for protocols of any complexity, the number of
events and states required in a straightforward transition
formalism becomes unworkably large. For example, to model
a protocol using sequence numbers, there must be different
states and events to handle each possible sequence number
[37]. Models falling into this category include state transi-
t i m idagrams [4], [SO], grammars [25], [47], Petri nets
and their derivatives [35], [46], L-systems [19], UCLA
graphs [37], and colloquies [30].

Programming language models [24], [41], [6], [21] are
motivated by the observation that protocols are simply one
type of algorithm, and that high-level programming languages
provide a clear and relatively concise means of describing
algorithms. Depending on how high level and abstract a
language is used, this approach to specification may be quite
near to an implementation of the protocol. As noted above,
this proximity is a mixed blessing, since unessential features
in the program are often combined with the essential prop-
erties of the algorithm. A major advantage of this approach
is the ease in han.dlirig variables and parameters which may
take on a large number of values (e.g., sequence numbers,
timers), as opposed to pure state machine models.

Hybrid models [45] , [16] , [IO] , [40] , [3] attempt to
combine the advantages of state .models and programs. These
typically employ a small-state model to capture only the
main features of the protocol (e.g., connection establish-
ment, resets, interrupts). This state model is then augmented
with”additional “context” variables and processing routines
for each state. In such hybrid models, the actions to be taken
are determined by using parameters from the inputs and values
of the context variables according to the processing routine
for each major state. For example, the sequence number of
an arriving message may be compared with a variable giving
the expected next sequence number to determine whether to
accept the message, what the next state should be, and how to
update the expected sequence number. Bochmann and Gecsei
[lo] have demonstrated the potential for trading off the
complexity of the state model with the amount of context
information for a given protocol. (Other techniques for
managing the complexity of protocols are discussed in Section

As noted above, one major goal of protocol specification
is to provide a basis for implementation. Some specification
methods facilitate this goal more than others. Programming
language specifications may be quite close to implementations
(but often lack the desired degree of abstraction). Direct
implementation of transition or hybrid model specifications
by some form of interpreter or “compiler” is also relatively
straightforward [l l] . In many cases, these implementation
methods have been at least partially automated [40], [47],

111-C.)

[221> P I .
Service Specifications

It is only recently that the need for comprehensive proto-
col service specifications has been realized [3], [43]. Initial
efforts at formal service specifications have been directed
towards applying general software engineering methodology.
As noted in Section 11-A, definition of the primitive opera-

I
BOCHMANN AND SUNSHINE: COMMUNICATION PROTOCOL DESIGN 627

tions supported by the layer (e.g., Send, Connect) is a, basic
feature of any specification. In abstract machine type specifi-
cations, internal “states” of the layer are also defined. These
states are used in defining the effects of each operation$ifd
may be changed as a result of the operation [38].

Other specification methods that do not require definition
of explicit states may also be used. I/O history type methods
define the allowed input and output sequences of the layer
and their relation to each other (e.g., that the sequence of
messages delivered is identical to the sequence of messages
sent) [20], [3]. Algebraic specifications [23] provide another
way of defining the allowed sequence of operations. Sunshine
[42] provides a comparison of several of these methods, but
work in this area is just beginning.

111. PROTOCOL VERIFICATION

In its broadest interpretation, system validation aims to
assure that a system satisfies its design specifications and
(hopefully) operates to the satisfaction of its users. Valida-
tion activity is important during all design phases, and may
include testing of the final ‘system implementation, simula-
tion studies, analytical performance predictions, and verifica-
tion. Verification is based on the system specification, and
involves logical reasoning. Therefore it may be used during
the design phase before any system implementation exists,
in order to avoid possible design errors. While testing -and
simulation only validate the system for certain test situations,
verification allows, in principle, the consideration of all
possible situations the system may encounter during actual
operation.

A. The Meaning of Verification

Verification is essentially a demonstration that an object
meets its specifications. Recalling from Section I1 that Services
and Protocol Entities are the two major classes of objects
requiring specification for a protocol layer, we see there are
two basic verification problems that must be addressed: 1)
the protocol’s Design must be verified by analyzing the pos-
sible interactions of the entities of the layer, each functioning
according to its (abstract) protocol specification and com-
municating through the underlying layer’s service, to’ see
whether this combined operation satisfies the layer’s service
specification; and 2) the Implementation of each protocol
entity must be verified against its abstract protocol specifica-
tion.

The somewhat ambiguous term “protocol verification”
is usually intended to mean this first design verification
problem. Because protocols are inherently systems of concur-
rent independent entities interacting via (possibly unreliable)
exchange of messages, verification of protocol designs takes
on a characteristic communication oriented flavor. Imple-
mentation of each entity, on the other hand, is usually done
by “ordinary” programming techniques, and hence represents
a more common (but by no means trivial) program verifica-
tion problem that has received less attention from protocol
verifiers.

The service specification itself cannot be verified,. but

rather forms the standard against which the protocol is veri-
fied. However, the service specification can be checked for
consistency [20]. It must also properly reflect the users’
desires, and provide an adequate basis for the higher levels
which use it. Unfortunately, techniques to achieve these
latter goals are still poorly understood.

It is important to note that protocol verification also
depends on the properties of the lower-layer protocol. In
verifying that a protocol meets its service specification, it
will be necessary to assume the properties of the lower-
1ayer:s service. If a protocol fails to meet its service specifi-
cation, the problem may rest either in the protocol itself, or
in the service provided by the lower layer.

Most of the verification work to date has been on design
rather than implementation, and we shall focus on design
verification in the remainder of this section. While a proto-
col design need only be verified once, each different imple-
mentation must be verified against the design.

B. What Can Be Verified

The overall verification problem may be divided along two
axes, each with two categories. On one axis, we distinguish
between general and specific properties. On the other we
distinguish between partial correctness and termination or
progress.

General properties are those properties common to all
protocols that may be considered to form an implicit part of
all service specifications. Foremost among these is the absence
of deadlock (the arrival in some system state o r set of states
from which there is no exit). Completeness, or the provision
for all possible inputs, is another general property. Progress
or termination may also be considered in this category since
they require minimal specification of what constitutes “use-
ful” activity or the desired final state.

Specific properties of the protocol, on the other hand,
require specification of the particular service to be provided.
Examples include reliable data transfer in a transport protocol,
copying a file in a file transfer protocol, or clearing a terminal
display in a virtual terminal protocol. DeFnition of these
features make up the bulk of service specifications.

On the other axis, partial correctness has the usual meaning
that if the protocol performs any action at all, it will be in
accord with its service specification. For example, if a trans-
port protocol delivers any messages, they will be to the cor-
rect destination, in the correct order, and without errors.
Termination or progress means that the specified services
will actually be completed in finite time. In the case of logical
verification, which is the subject of this report, it is sufficient
to ascertain a finite time delay. In the case that the efficiency
and responsiveness of the protocol is to be verified, it is
clearly necessary to determine numerically the expected
time delay, throughput, etc.

C. Verification Methods

Approaches to protocol verification have followed two
main paths: reachability analysis and program proofs. Within

628 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980

the scope of this paper, we can only outline these two
approaches. The references cited in Section Iv provide more
details on particular techniques.

Reachability analysis is based on exhaustively exploring
all the possible interactions of two (or more) entities within
a layer. A composite or global state of the system is defined
as a combination of the states of the cooperating protocol
entities and the lower layer connecting them. From a given
initial state, all possible transitions (user commands, time-
outs, message arrivals) are generated, leading to a number of
new global states. This process is repeated for each of the
newly generated states until no new states are generated
(some transitions lead back to already generated states). For
a given initial state and set of assumptions about the under-
lying layer (the type of service it offers), this type of analysis
determines all of the possible outcomes that the protocol may
achieve. Reference [SO] provides a clear exposition of this
technique.

Reachability analysis is particularly straightforward to
apply to transition models of protocols which have explicit
states and/or state variables defined. It is also possible to
perform a reachability analysis on program models by
establishing a number of “break points” in the program that
effectively define control states [24]. Symbolic execution
(see the following) may also be viewed as a form of reach-
ability analysis.

Reachability analysis is well suited to checking the general
correctness properties described above because these prop-
erties are a direct consequence of the structure of the reach-
ability graph. Global states with no exits are either deadlocks
or desired termination states. Similarly, situations where the
processing for a receivable message is not defined, or where
the transmission medium capacity is exceeded are easily
detected. The generation of the global state space for transi-
tion models is easily automated, and several computer aided
systems for this purpose have been developed [16], [SO],
[37]. The major difficulty of this technique is “state space
explosion” because the size of the global state space may
grow rapidly with the number and complexity of protocol
entities involved and the underlying layer’s services. Tech-
niques for dealing with this problem are discussed below.

The program proving approach involves the usual formula-
tion of assertions which reflect the desired correctness prop-
erties. Ideally, these would be supplied by the service specifica-
tion, but as noted above, services have not been rigorously
defined in most protocol work, so the verifier must formulate
appropriate assertions of his own. The basic task is then to
show (prove) that the protocol programs for each entity
satisfy the high-level assertions (which usually involve both
entities). This often requires formulation of additional as-
sertions at appropriate places in the programs [41], [6].

A major strength of this approach is its ability to deal
with the full range of protocol properties to be verified,
rather than only general properties. Ideally, any property for
which an appropriate assertion can be formulated can be
verified, but formulation and proof often require a great deal
of ingenuity. Only modest progress has been made to date in
the automation of this process.

As with specification, a hybrid approach promises to
combine the advantages of both techniques. By using a state
model for the major states of the protocol, the state space is
kept small, and the general properties can be checked by an
automated analysis. Other properties, for which a state model
would be awkward (e.g., sequenced delivery), can be handled
by assertion proofs on the variables and procedures which
accompany the state model. Such combined techniques are
described in [161 and [101 .

While a large body of work on general program verifica-
tion exists, several characteristics of protocols pose special
difficulties in proofs. These include concurrency of multiple
protocol modules and physical separation of modules so that
no shared variables may be used. A further complication is
that message exchange between modules may be unreliable
requiring methods that can deal with nondeterminism. A few
early applications of general program verification methods to
protocols are cited in Section IV.

A particular form of proof that has been useful for proto-
cols with large numbers of interacting entities (e.g., routing
protocols) may be called “induction on topology” [33].
The desired properties are first shown to be true for a mini-
mum subset of the entities, and then an induction rule is
proved showing that if the properties hold for a system of N
entities, they also hold for N + 1 entities.

When an error is found by some verification technique, the
cause must still be determined. Many transitions or program
statements may separate the cause from the place where the
error occurs, as for example when the acceptance of a dupli-
cate packet at the receiver is caused by the too rapid reuse of a
sequence number at the sender. In some cases the protocol
may be modeled incorrectly, or the correctness conditions
may be formulated incorrectly. In other cases, undesired
behavior may be due to transmission medium properties
that were not expected when the protocol was designed
(e.g., reordering of messages in transit). Even when an auto-
mated verification system is available, considerable human
ingenuity is required to understand and repair any errors
that are discovered.

Another approach to achieving correct protocols that has
been proposed recently is based on constructive design rules
that automatically result in correct protocols. In one case
[5 0] , design rules are formulated which guarantee that the
specifications obtained for a set of interacting entities will
be complete. For each send transition specified by the de-
signer, the rules determine the corresponding receive transi-
tion to be added to the partner entity. In another case [34],
the specification of a second entity is determined by a design
rule such that it will operate with a specified first entity to
provide a given overall service.

A major difficulty for protocol verification by any method
is the complexity of the global system of interacting protocol
entities, also termed “state space explosion.” The following
methods may be used to keep this complexity within manage-
able limits.

1) Partial Specification and Verification: Depending on the
specification method used, only certain aspects of the proto-
col are described. This is often the case for transition diagram

BOCHMANN AND SUNSHINE: COMMUNICATION PROTOCOL DESIGN 629

specifications which usually capture only the rules concerning
transitions between major states, ignoring details of parameter
values and other state variables.

2) Choosing Large Units of Actions: State space explosion
is due to the interleaving of the actions executed by tl%$dif-
ferent entities. For example, the preparation and sending of a
protocol data unit by an entity may usually be considered an
indivisible action which proceeds without interaction with
the other entities of the system. The execution of such an
action may be considered a single “transition” in the global
protocol description.

A particular application of this idea is to consider only
states where the transmission medium is empty. Such an
“empty medium abstraction” [4] is justified when the number
of messages in transit is small. In this case, previously separate
sending and receiving or sending and loss transitions of dif-
ferent entities can be combined into single joint transitions
of both entities.

3) Decomposition into Sublayers andlor Phases: The
decomposition of the protocol of a layer into several sub-
layers and/or phases of bperation simplifies the description
and verification, because the protocol of each part may be
verified separately. An example of this idea is the decomposi-
tion of HDLC into the sublayers of bit stuffing, checksum-
ming, and elements of procedure, and the division of the latter
into several components as described in [9].

4) Classifying States by Assertions: Assertions which are
predicates on the set of all possible system states may be
formed. Each predicate defines a set (or class) of states which
consists of those states for which the predicate is true. One
may then consider classes of states collectively in reachability
analysis instead of considering individual states. By making an
appropriate choice of predicates (and therefore clyses of
states) the number of cases to be considered may be reduced
considerably. This method is usually applied for proving
partial correctness of protocol specifications given in some
programming language [41] , [6] , and also in the case of
symbolic execution [131 . Typically, the assertions depend on
some variables of the entities and the set of messages in
transit (through the layer below).

To illustrate the possible savings in the number of cases
to be analyzed, consider the state of an entity receiving
numbered information frames. Instead of treating all pos-
sible values of a sequence counter variable explicitly as dif-
ferent states, it may be possible to consider only the three
cases where the variable is “less than,” “equal to,” or “greater
than” the number in the information frame received.

5) Focusing Search: Instead of generating all possible
states, it is possible to predetermine potential global states
with certain properties (e.g., deadlocks), and then check
whether they are actually reachable [161 .

6)Automation: Some steps in the analysis process may be
performed by automated systems [131 , [161, [20] , [24] , [50] ,
[37] , [13] . However, the use of these systems is not trivial,
and much work goes into representing the protocol and
service in a form suitable for analysis. Human intervention is
needed in many cases for distinguishing between useful and
undesired loops, or for guiding the proof process.

IV. USES OF FORMAL TECHNIQUES

We give in the following a (certainly incomplete) list of
cases where formal methods were successfully used for de-
signing data communication and computer network proto-
cols. In some cases, the formal specification was made after the
system design was essentially finished, and served for an
additional analysis of correctness and efficiency, or as an im-
plementation guide. In other cases, the formal specification
was>used as a reference document during the system design.

Standards
i l

Call establishment in the CCITT X.21 protocol has been
modeled with a state transition-type model and analyzed with
a form of reachability analysis [49]. The analysis checked
for general correctness properties of completeness and dead-
lock, and. uncovered a number of completeness errors (i.e.,
a protocol module could receive a message for which no
processing was defined).

Virtual circuit establishment in the CCITT X.25 protocol
has been modeled with a state transition model and analyzed
by a manual reachability analysis [3] , [l] , [7]. It was found
that several cycles with no useful progress could persist after
the protocol once entered certain unsynchronized states.

A formal specification method was used during the design
of several interface standards for the interconnection of
minicomputers with measurement and instrumentation com-
ponents [26], [48]. The relatively concise description of the
protocols was used as means for communication between the
members of the‘standard committees and for the verification
of the design. It is also part of the final standard documents.

The HDLC link protocol has been specified with a regular
grammar model [25] that incorporated an indexing technique
to accommodate sequence numbering. The same protocol
has also been specified with a hybrid model combining state
transitions with context variables and high-level language
statements [9]. The latter specification also heavily employed
decomposition t o partition the protocol into seven separate
components, and was used in obtaining an implementation
of the HDLC link level procedures of X.25 [111.

Arpanet
Connection establishment in a transport protocol (TCP)

for the ARPANET has been partially modeled with a hybrid
state transition model and validated with a manual reach-
ability analysis [45]. An automated reachability analysis
[24] was also used on a simplified model and revealed an
error in sequence number handling, and incorrect modeling
of the transmission medium.

A simplified version of the ARPANET IMP-IMPlink protocol
has been analyzed with a transition model augmented with
time constraints to show that proper data transfer requires
certain time constraints to be maintained between retrans-
mission, propagation, and processing times [35].

A simplified version of the ARPANET communications
subsystem has been modeled with a high-level programming
language, and verified using partially automated program
proving techniques [20] , [21] . A software engineering system

630 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980

(called Gypsy) was used which provides a unified language
for expressing both specifications and programs so that high-
level specifications in the design can be progressively refined
into detailed programs. Program modules can be both compre-
hensively verified in advance, or checked against their specifi-
cations at run time for the particular inputs which occur.

Connection establishment between a requester and a shared
server process (the ARPANET Initial Connection Protocol)
has been modeled with a state transition model and analyzed
by an automated reachability analysis [37]. The analysis
showed that one of a pair of simultaneous requests for service
might be rejected. A revised version of the protocol was shown
to eliminate this error. The same analysis technique was also
used to validate a simple data transfer protocol.

Other Examples

The end-to-end transport protocol of the French computer
network Cyclades was first specified in a semiformal manner
using a high-level programming language. This specification
was the basis for the different protocol implementations in
different host computers. Some of these implementations
were obtained through a description in a macrolanguage,
derived from the original protocol specification [Sl] . The
same specification was also the basis for simulation studies
which provided valuable results for the protocol validation
and performance evaluation [29] , [171 . A formalized speci-
fication of the protocol has also been given using a hybrid
model with state machines augmented by context informa-
tion and processing routines [151 .

The procedures for the internal operation of the Canadian
public data network Datapac were described by a semiformal
method using state diagrams and a high-level programming
language for the specification of the communicating entities
[32]. This description was very useful for doing semiformal
verifications of the protocols during the design phase, and
served as a reference document during the implementation
and testing phases of the system development.

IBM’s SNA has been specified with a hybrid model using
state machines augmented by context information and
processing routines [40] . Hierarchical decomposition is
heavily used to create a large number of more manageable
modules. The model provides a basis for both automated
verification of general properties, and for compilation of
executable code.

The Message Link Protocol [I21 for process-to-process
communication has been formally specified in a hybrid model.
A formal service specification was also given, and the design
has been partially verified by a manual reachability analysis
using symbolic execution [SI. The verification uncovered a
synchronization problem that has been corrected in a more
recent version of the protocol.

V. CONCLUSIONS

The specification of a protocol layer must include defini-
tions of both the services to be provided by the layer, and
the protocol executed by the entities within the layer to
provide this service. “Design verification” then consists of
showing that the interaction of entities is indeed adequate to

provide the specified services, while “implementation verifi-
cation” consists of showing that the implementations of the
entities satisfy the more abstract protocol specification. A
useful subset of design verification may be described as verifi-
cation of “general properties” such as deadlock, looping, and
completeness. These properties may be checked in many
cases without requiring any particular service specification.

Although protocol specifications must serve many purposes,
verification and implementation are two critical tasks which
require rigorous or formal specification techniques in order
to be fully successful. Formal protocol specifications are
more precise than descriptions in natural language, and should
contain the necessary details for obtaining compatible proto-
col implementations on different system components. The
cases mentioned in Section IV demonstrate that formal
methods may be used profitably for the specification, verifi-
cation, and implementation of communication protocols.
However, a great deal of work remains to be done in improving
verification techniques and high-level system implementation
languages, in integrating performance (efficiency) analysis
with analysis for logical correctness, and in automating these
analysis techniques.

Most published papers on protocol verification present
some particular verification technique, and demonstrate this
technique by discussing its application to a simple protocol
of more or less academic nature. This is not surprising, con-
sidering the short history of this specialized discipline. Some
a posteriori verifications of protocol standards of general
concern have been presented pointing out certain difficulties
with the adopted procedures [l] , [7] , [49] . These verifi-
cation efforts were based on a state reachability analysis,
and in one case [49] an automated system was used. The
results will influence the implementation of these protocols,
and may have an impact on future revisions of the standards.

We believe that more effort should be spent on the logical
verification of protocols during the design phase. Based on a
formalized description method, this effort may in the future
be simplified by the use of interactive automated systems for
protocol verification. The same protocol specification used
for the verification should also serve as an official definition
of the protocol, and could be transformed, possibly through
a semiautomated process into a usable protocol implementa-
tion [40], [22], [l 11 . It is clear that such an approach would
increase the reliability of the protocols, decrease compatibility
problems, and lower the cost of the protocol implementations.

REFERENCES
[I] D. Belsnes and E. Lynning, “Some problems with the X.25 packet level

protocol,”ACMSIGCOMMComput. Commun. Rev., vol. 7. pp. 41-51,
Oct. 1977.

[2] D. Bjorner. Finite state automationdefinition of data communication
line control procedures,” in Full Joinr Comput. Conf. .. AFIPS Conf.
Proc.. 1970.

[3] G . V. Bochmann, “A general transition model for protocols and com-
munication services,’’ this issue, pp. 643-650.

[4] -, “Finite state description of communication protocols.” Comput.
Networks. vol. 2, pp. 361-372. Oct. 1978.

[5] -, “Formalized specification of the MLP,” “Specification of the
services provided by the MLP,” and “An analysis of the MLP,” Univ.
Montreal, Dep. d’I.R.0.. June 1979.

[6] -, Logical verification and implementation of protocols,” in Proc.
4rh Dora Commun. Symp., Quebec, Canada, 1975, pp. 8-5-8-20.

BOCHMANN AND SUNSHINE: COMMUNICATION PROTOCOLS DESIGN 63 1

-, “Notes on the X.25 procedures for virtual call establishment and
clearing,”ACMSIGCOMMComput. Commun. Rev., vol. 7. pp. 53-59,
Oct. 1977; see also [4].
-, “Specification and verification of computer communication
protocols,” in Advances in Distributed Processing Management.
Philadelphia, PA: Heyden & Son, 1980, to be published.
G. V. Bochmann and R. J . Chung, in “A formalized specification of
HDLC classes of procedures,” in Proc. Nut. Telecommun:’&onf. .. Los
Angeles, CA, Dec. 1977. Paper3A.2.
G. V. Bochmann and J. Gecsei. “A unified model for the specification
and verification of protocols.” in Proc. IFIP Congress. 1977. pp. 229-
234.
G. V. Bochmann and T. Joachim, “Development and structure of an
X.25 implementation.” IEEE Trans. Soffware Eng., vol. SE-5, pp.
429-439. Sept. 1979.
G. V. Bochmann and F. H. Vogt, “Message link protocol-Functional
specifications,” ACM SIGCOMM Comput. Commun. Rev., vol. 9, pp.

D. Brand and W. H. Joyner, Jr., ”Verification of protocols using
symbolic execution,” Comput. Networks, vol. 2 , pp. 351-360. Oct.
1978.
A. Danthine. “Protocol representation with finite state models.” this
issue, pp. 632443.
A. S. Danthine and J. Bremer. “An axiomatic description of the transport
protocol of Cyclades,” presented at Prof. Conf. Comput. Networks and
Teleprocessing, Aachen, Germany, Mar. 1976.
-, “Modeling and verification of end-to-end transport protocols.”
Comput. Networks, vol. 2 , pp. 38 1-395, Oct. 1978.
A. Danthine and E. Eschenhauer, “Influence on the node behavior of a
node-to-node protocol,” in Proc. 4th Datu Commun. Symp.. Oct. 1975,
pp. 7- 1-7-8.
J. Day and C. Sunshine. Eds. “A bibliography on the formal speci-
fication and verification of computer network protocols.” ACM
SIGCOMM Compur. Commun. Rev.; vol. 9. Oct. 1979.
C. A. Ellis, “Consistency and correctness of duplicate database
systems,’’ in Proc. 6th Symp. Op. Syst. Principles, Purdue Univ., West
Lafayette. IN, Nov. 1977; ACM Up. Sysr. Rev., vol. I I. pp. 67-84,
1977.
D. I. Good, “Constructing verified and reliable communications
processing systems,”ACMSo@Qre Eng. Notes, vol. 2 , pp. 8-13, Oct.
1977: also Rep. ICSCA-CPM-6, Univ. Texas at Austin.
D. I . Good and R. Cohen, “Verifiable communications processing in
GYPSY,” Univ. Texas at Austin, Rep. ICSCA-CPM- I I. June 1978.
M. G. Gouda and E. G. Manning. “Protocol machines: A concise formal
model and its automatic implementation.” in Proc. 3rdlnt. Conf. Com-
put. Commun., Toronto, Canada, 1976, pp. 346-350.
J. V. Guttag, E. Horowitz, and D. R. Musser, “Abstract data types and
software validation,” Commun. Ass. Comput. Much., vol. 21, Dec.
1978.
J. Hajek, “Automatically verified data transfer protocols.” in Proc. 4th
Inr. Cornput. Commun. Conf., Kyoto, Japan, Sept. 1978, pp. 749-756;
also see progress Rep. in ACM SIGCOMM Comput. Commun. Rev.. vol.
8, Jan. 1979.
J. Harangozo. “An approach to describing a link level protocol with a
formal language.” in Proc. 5th Data CommunSymp.,Utah, 1977. pp.
4-374-49.
IEEE Standard 488- 1975: see also D. E. Knoblock, D. C. Loughry. and
C . A. Vissers, “Insight into interfacing.” IEEESpectrurn. May 1975.
IFIP WG 6. I. “Proposal for an internetwork end-to-end transport
protocol,” INWG Gen. Note 96. I; also in Proc. Comput. Network
ProtocolsSymp., Univ. Liege, Belgium, Feb. 1978. p. H-5.
International Organization for’ Standardization, “Reference model of
open systems architecture,” TC97/SC 16/N227, June 1979.
G. LeLann and H. LeGoff. “Verification and evaluation of com-
munication protocols,” Comput. Networks. vol. 2. pp. 50-69, Feb.
1978.
G. LeMoli. “A theory of colloquies,” A h Frequenzu, vol. 42. pp.
493-223E-500-23OE3. 1973; also in Proc. First European Workshop on
Cornput. Networks, Arks. France. Apr. 1973. pp. 153-173.
B. Liskov and S. Zilles, “Specification techniques for data
abstractions.” IEEE Trans. Soffware Eng.. vol. SE-I. pp. 7-18, Mar.
1975.
F. Mellor, W. J. Olden. and C. J. Bedard. “A message-switched
operating system for a multiprocessor.” in Proc.CUMPSAC ’77,IEEE.
Chicago, IL. 1977, pp. 772-777.
P. M. Merlin, “Specification and validation of protocols.” IEEE Trans.
Commun., vol. COM-27, pp. 1671-1680. Nov. 1979.

7-39, Apr. 1979.

[34] P. Merlin and G. V. Bochmann. “On the construction of communication
protocols and module specifications,” Stanford Univ.. Tech. Rep. SEL
182, Dec. 1979.
P. M. Merlin and D. J. Farber. “Recoverability of communication
protocol-Implications of a theoretical study.” IEEE Trans. Commuq.,
vol. COM-24. pp. 103&1043, Sept. 1976.

software.” in Proc. IFIP Congress 1977, pp. 861-867.
D. L. Parnas, “The use of precise specifications in the development of

J . B. Postel. “A graph model analysis of computer communications
protocols,” Ph.D. thesis, Comput. Sci. Dep., Univ. California. Los
Angeles, UCLA ENG-7410, 1974.
L. Robinson, K. N. Levitt, and B. A. Silverberg. The HDMHandbook,
vol. 1-111. SRI Int.. 1979.
A. M. Rybczynski and D. F. Weir, “Datapac X.25 service charac-
teristics.” in Proc. Fifth Data Commun. Symp., 1977, pp. 4-50-
4-57.
G. D. Schultz et al., “Executable description and validation of SNA,”
this issue, pp.661477.

pp. 99-1 IO. Sept. 1976.
N. V. Stenriing. “A data transfer protocol.” Comput. Networks. vol. I ,

C. A. Sunshine. “Formal methods for communication protocol
specification and verification,” The Rand Corp.. N- 1429. Nov. 1979. -. “Formal techniques for protocol specification and verification,”
Comput. Mag., vol. 12. pp. 7CL27. Sept. 1979.
-, “Survey of protocol definition and verification techniques,”
Comput. Networks. vol. 2, pp. 346350, Oct. 1978.
C. A. Sunshine and Y K. Dalal, “Connection management in transport
protocols,” Cornput. Networks. vol. 2 , pp. 45-73? Dec. 1978.
F. J. W. Symons. “Modelling and analysis of communications protocols
using numerical Petri nets,” Dep. Elec. Eng., Univ. Essex, England,
Tech. Rep. 152, May 1978.
A. Y. Teng and M. T. Liu, “A formal model for automatic implementa-
tion and logical validation of network communication protocols,” in
Proc. Comput.’Networking Svmp.. Nat. Bureau Standards. Dec. 1978,

C. A. Vissers and B. V. D. Dolder, “Generative description of DIN 66
202(E)”German,English,TwenteUniv.,Rep. 1261, 1881,Mar. 1977.
c. H. West and P. Zafiropulo, “Automated validation of a com-
munications protocol: The CCITT X.2 I recommendations.” IBMJ. Res.
Develop., vol. 22, pp. 6@-7 I. Jan. 1978.

this issue, pp. 651461.
p. Zafiropulo et ul.. “Towards analyzing and synthesizing protocols,”

H: Zimmermann, “The Cyclades end-to-end protocol,” in Proc. Fourth
Data Commun. Symp., 1975. pp. 7-21-7-26.

pp. 114-123.

*
Gregor V. Bochmann received the Diploma in
physics from the University of Munich, Munich.
Germany, in 1968, and the Ph.D. degree from
McGill University, Montreal, P.Q., Canada, in
1971.

He has worked in the areas of programming
languages and compiler design, communication pro-
tocols. and software engineering. He is currently
Associate Professor in the Departement d’lnform-
atique et de Recherche Operationnelle, UniversitLde
Montreal. His present work is aimed at design

methods forcommunication protocols anddistributed systems. In 1977-!978 he
was a Visiting Professor at the Ecole Polytechnique FCdLrale, Lausanne.
Switzerland. He is presently a Visiting Professor in the Computer Systems
Laboratory. Stanford University, Stanford. CA.

*
Carl A. Sunshine. for a photograph and biography, see this issue, p. 412

